
1

23

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

NEUROSCIENCE

NSC 21092 No. of Pages 13

28 August 2023
RESEARCH ARTICLE
G. Wang et al. / Neuroscience xxx (2023) xxx–xxx
Neural Representation of Collective Self-esteem in Resting-state

Functional Connectivity and its Validation in Task-dependent Modality

Guangtong Wang, y Mei Zeng y Jiwen Li Yadong Liu, Dongtao Wei, Zhiliang Long, Haopeng Chen, Xinlei Zang and
Juan Yang *

Faculty of Psychology, Southwest University, Chongqing 400715, China

Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China

Abstract—Introduction: Collective self-esteem (CSE)
is an important personality variable, defined as self-worth derived from membership in social groups. A study

of

explored the neural basis of CSE using a task-based functional magnetic resonance imaging (fMRI) paradigm;
however, task-independent neural basis of CSE remains to be explored, and whether the CSE neural basis of
resting-state fMRI is consistent with that of task-based fMRI is unclear.

Methods: We built support vector regression (SVR) models to predict CSE scores using topological metrics mea-

sured in the resting-state functional connectivity network (RSFC) as features. Then, to test the reliability of the
SVR analysis, the activation pattern of the identified brain regions from SVR analysis was used as features to dis-
tinguish collective self-worth from other conditions by multivariate pattern classification in task-based fMRI data-
set.

Results: SVR analysis results showed that leverage centrality successfully decoded the individual differences in

CSE. The ventromedial prefrontal cortex, anterior cingulate cortex, posterior cingulate gyrus, precuneus, orbito-
frontal cortex, posterior insula, postcentral gyrus, inferior parietal lobule, temporoparietal junction, and inferior
frontal gyrus, which are involved in self-referential processing, affective processing, and social cognition net-
works, participated in this prediction. Multivariate pattern classification analysis found that the activation pattern
of the identified regions from the SVR analysis successfully distinguished collective self-worth from relational
self-worth, personal self-worth and semantic control.

Conclusion: Our findings revealed CSE neural basis in the whole-brain RSFC network, and established the con-

cordance between leverage centrality and the activation pattern (evoked during collective self-worth task) of the
identified regions in terms of representing CSE.� 2023 IBRO. Published by Elsevier Ltd. All rights reserved.ec
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INTRODUCTION

Self-esteem has been studied by psychologists for many

decades (James et al., 1890). Recently, with the develop-

ment of the social identity theory, collective self-esteem

(CSE) has gradually gained increasing attention in the

field of self-esteem. CSE refers to self-worth derived from

membership in social groups (Crocker & Major, 1989;

Luhtanen & Crocker, 1992), emphasizing the influence
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of a group on self-concept. Researchers have found that

CSE has an important effect on maintaining an individ-

ual’s mental health. Specifically, people with high CSE

have been shown to exhibit modestly higher subjective

well-being and life satisfaction scores (Crocker et al.,

1994; Bettencourt et al., 1999), while those with low

CSE are at an increased risk of psychiatric disorders such

as anxiety and depression (Hassan et al., 2013).

Previous studies have used self-report scales and

cognitive neuroscience techniques to explore CSE

(Crocker et al., 1994; Du, King, & Chi, 2017; Chen

et al., 2021a,b; Zeng et al., 2021). By measuring the neu-

ral signals when subjects performed a collective self-

worth task during functional magnetic resonance imaging

(fMRI), a previous study facilitated a preliminarily under-

standing of the neural basis of CSE (Zeng et al., 2021);

this study found that the cortical midline structure
Functional Connectivity and its Validation in Task-dependent Modality. Neuroscience (2023), https://doi.
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(CMS), parahippocampal gyrus, anterior insula, posterior

insula, caudate, postcentral gyrus, inferior parietal lobule

(IPL), and temporoparietal junction (TPJ) were involved

in CSE processing. Specifically, the CMS, which is known

to play a role in self-referential evaluation processing

(Northoff et al., 2006), was found to be involved in retriev-

ing group-related memories and making value assess-

ments during CSE processing. In addition, the posterior

insula and postcentral gyrus were engaged in generating

appropriate emotional responses in association with CSE

processing. Further, the TPJ and IPL were engaged in the

process of inferring the attitudes of others outside the

group towards their group from a third-person perspective

(Premack & Woodruff, 1978; Frith & Frith, 2005; Van

Overwalle & Baetens, 2009).

However, prior studies focused only on a task-based

paradigm, which might be heavily dependent on the

self-worth paradigm and experimental materials used to

induce CSE (Zeng et al., 2021). This approach neglects

the general neural representation for individual differ-

ences in CSE. Moreover, self-esteem is usually consid-

ered a personality trait that is relatively stable and

affects long-term behavioral style regardless of specific

situations (Jaccard, 1974; Neiss et al., 2002; Furr,

2009). Therefore, it is necessary to explore the task-

independent neural basis of CSE.

Compared with task-based fMRI, resting-state fMRI

provides a different perspective to understand brain

function (Lacosse et al., 2021). It has been suggested that

the features of resting-state functional connectivity

(RSFC) can predict task-based activation maps (Cole

et al., 2016; Tavor et al., 2016; Jones et al., 2017;

Tobyne et al., 2018; Osher et al., 2019). As such, RSFC

patterns correspond to task-based co-activation patterns

(Krienen et al., 2014). However, it is still unknown whether

concordance exists between RSFC pattern and the acti-

vation pattern during a collective self-worth task in terms

of representing CSE.

Advances in brain imaging analysis techniques have

provided a new avenue to explore spontaneous brain

activity signals. RSFC has served as a ‘‘fingerprint” for

identifying individual differences (Tang et al., 2013; Finn

et al., 2015; Dubois et al., 2018; Nostro et al., 2018;

Kashyap et al., 2019; Passamonti et al., 2019; Altinok

et al., 2021). The results from RSFC studies are very

dependable, with high test–retest reliability if there is suf-

ficient sample data (Cao et al., 2014; Zuo & Xing, 2014;

Noble et al., 2017). Decoding the individual differences

in self-esteem using seed-based RSFC analysis has been

attempted previously (Chavez & Heatherton, 2015; Pan

et al., 2016; Kawamichi et al., 2018; Chen et al., 2021a,

b). However, these studies mainly focused on the func-

tional synchrony between two specific brain regions.

The potential use of whole-brain RSFC analysis in uncov-

ering more subtle individual differences compared to any

local or seed-based RSFC analyses has been demon-

strated (Liu et al., 2019). As such, the topological metrics

(e.g., nodal betweenness centrality) extracted from

whole-brain RSFC networks have been widely used to

predict multiple psychological constructs, such as the

five-factor model personality traits (Toschi et al., 2018;
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Kong et al., 2019), chronic insomnia disorder (Li et al.,

2018), Alzheimer’s disease (Hojjati et al., 2017), depres-

sion (Onoda & Yamaguchi, 2015), and consciousness

(Uehara et al., 2014). Graph analysis can quantitatively

depict the organizational principles of complex brain net-

works (Bullmore & Sporns, 2009). It has consistently been

demonstrated that the topological metrics of RSFC net-

works successfully detect subtle individual differences

(Deng et al., 2016; Liu et al., 2017; Feng et al., 2018a,b;

Tang et al., 2018). Therefore, utilizing topological metrics

for quantitatively depicting whole-brain RSFC networks is

warranted.

Moreover, an increasing number of neuroimaging

studies have employed multivariate methods to detect

task-based brain activation signals (Woo et al., 2017;

Weaverdyck et al., 2020). Instead of detecting the activa-

tion strength of a single brain region or voxel in univariate

analysis, multivariate pattern analysis (MVPA) depicts

spatially distributed patterns of neural activity (Haxby

et al., 2001). This improves the sensitivity of detecting

subtle differences in psychological or cognitive states

(Sapountzis et al., 2010; Jimura & Poldrack, 2012). Previ-

ous studies have demonstrated the potential of MVPA to

predict self-esteem (Izuma et al., 2018; Li et al., 2021;

Zeng et al., 2021). As such, applying MVPA to explore

the concordance between RSFC pattern and the activa-

tion pattern during collective self-worth task in terms of

representing CSE is required.

Overall, the current study aimed to uncover the task-

independent neural basis of CSE using graph analysis

and machine learning algorithms. Then, to test the

reliability of these resting-state analyses, we studied the

concordance between RSFC pattern and the activation

pattern during a collective self-worth task in terms of

representing CSE using multivariate pattern

classification analysis. If the activation pattern of the

identified brain regions from resting-state analyses can

classify collective self-worth and other conditions, the

previous resting-state analyses are valid. We speculated

that the CMS, posterior insula, caudate, postcentral

gyrus, IPL, and TPJ might participate in the prediction of

CSE in the resting-state fMRI dataset. Based on the

linkage between task-evoked activation maps and

RSFC features, we predicted that the activity pattern of

the identified regions from resting-state analyses could

successfully distinguish collective self-worth condition

from other conditions in the task-based fMRI dataset.
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153
EXPERIMENTAL PROCEDURES

Exploring the task-independent neural basis of CSE

First, all participants completed self-report

questionnaires. Then, each participant underwent

resting-state fMRI scanning. All participants were

instructed to close their eyes and not fall asleep or think

about anything. Finally, topological metrics from the

RSFC networks were extracted and used as features to

predict CSE scores. The entire data analysis process is

shown in Fig. 2.
Functional Connectivity and its Validation in Task-dependent Modality. Neuroscience (2023), https://doi.
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Fig. 1. Illustration of an example run. There are four conditions (collective self-worth, relational self-worth, personal self-worth, and semantic

control) in each run. Each condition comprise ten trails. During each trial, a sentence is shown for 4 s followed by a fixation cross that was presented

for 2, 4, or 6 s.
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Participants. We recruited 249 healthy Chinese

undergraduate students from a local university in China

who underwent resting-state fMRI data collection. Of

these, 23 were excluded due to large head movements

(maximal displacement > 2.5 mm, n= 14), extreme

measure scores (n= 1), and abnormal functional

connectivity (n= 8). Finally, data from 226 participants

were included in the resting-state dataset (129 females;

age range, 17–24 years; mean age ± standard

deviation [SD] = 20.2 ± 1.5 years).
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Questionnaire. The Collective Self-Esteem Scale was

used to assess collective self-esteem (Luhtanen &

Crocker, 1992). The Chinese Revised Collective Self-

Esteem Scale contains 16 items that are divided into four

dimensions, namely membership esteem (e.g., ‘‘I am a

valuable member of the social group”), private CSE

(e.g., ‘‘I feel good about being a member of the group”),

public CSE (e.g., ‘‘Overall, my social groups are consid-

ered good by others”), and importance of identity (e.g.,

‘‘The social groups I belong to are an important reflection

of who I am”). Further, each dimension comprises four

items and all are written in Mandarin Chinese. Partici-

pants answered these items on a seven-point Likert scale

ranging from one (strongly disagree) to seven (strongly

agree). The mean values of the 16 items were used for

prediction analysis. A prior study containing 420 samples

found that the internal consistency coefficient of the Chi-

nese Revised Collective Self-Esteem Scale was 0.84

(Jia, 2009).
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Functional neuroimaging data acquisition. The brain

imaging data was obtained by a 3 T Prisma Siemens

Trio MRI scanner. Resting-state fMRI data was

collected with the following echo-planar pulse sequence:

repetition time = 2000 ms, echo time = 30 ms, flip

angle = 90�, voxel size = 3 � 3 � 3 mm3, field of

view = 192 � 192 mm2, number of slices = 32, slice

thickness = 3 mm, and slice gap = 0.99 mm. The

anatomical scan information can be seen in Method

S1.1 in the supplementary materials.
Resting-state fMRI data preprocessing. Preprocess-

ing of the resting-state fMRI data was completed using

the Data Processing Assistant for resting-state fMRI

(DPARSF, https://rfmri.org/dparsf; Yan & Zang, 2010).

First, the initial ten volumes were removed to obtain a

stable signal, and the remaining 232 volumes were

included in the final analysis. The purpose of this step

was to avoid unstable signals when the fMRI scanner

was turned on but the participants were not ready. Sec-

ond, slice timing and head motion correction were per-

formed, and the head movement parameters of each

participant were obtained. We excluded 14 participants

who had a head motion maximal displacement greater

than 2.5 mm. Next, we co-registered the functional image

to the anatomical image and segmented it into gray mat-

ter, white matter, and cerebrospinal fluid. Then, we nor-

malized the functional images onto the standard T1

Montreal Neurological Institute template image with a

voxel size of 3 � 3 � 3 mm3. The functional images were
Functional Connectivity and its Validation in Task-dependent Modality. Neuroscience (2023), https://doi.
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Fig. 2. The overall data analysis procedure. The procedure includes ① predicting collective self-esteem questionnaire scores using graph

analysis in resting-state fMRI and ② classifying collective self-worth and three other conditions in task-based fMRI; CP classifier, distinguished

collective self-worth from personal self-worth processing; CR classifier, distinguished collective self-worth from relational self-worth processing; CS

classifier, distinguished collective self-worth from semantic processing.
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smoothed by a 6-mm full-width at half-maximum Gaus-

sian kernel. Subsequently, we used the GRETNA toolbox

to perform further preprocessing (https://www.nitrc.org/

projects/gretna; Wang et al., 2015). The linear trends

were removed, and a temporal band-pass filter (0.009–

0.1 Hz) was used to remove low or high-frequency noise

and artifacts (Biswal et al., 1995; Zuo et al., 2010). Finally,

the effects of redundant parameters (24 movement

parameters, white matter signals, and cerebrospinal fluid

signals) were regressed.

Graph analysis and support vector regression (SVR).
The GRETNA toolbox was used to perform graph

analysis wherein RSFC networks were divided into

nodes and edges and were filtered by orthogonal

minimal spanning trees (Bullmore & Sporns, 2009; Song

et al., 2015; Wang et al., 2015; Dimitriadis et al., 2017).

Then, SVR models were trained to predict CSE scores.

Network construction. Whole-brain network nodes

were defined based on the power-264 atlas that

includes 264 non-overlapping 3-mm-radius spheres. The

power-264 atlas spans the cerebral cortex, subcortical

structures, and cerebellum (Power et al., 2011). The net-

work coordinate of each sphere is registered to the Mon-

treal Neurological Institute space. The parcellation

scheme of the power-264 atlas is different from that of

the Schaefer atlas regarding the shape and number of

spheres (Schaefer et al., 2018). Then, we averaged the
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blood oxygenation level dependent signals of all the vox-

els in each region at each time point and calculated the

correlation coefficients between all paired regions to build

edges, resulting in a 264 � 264 FC matrix for each partic-

ipant. Then, Fisher-Z transformation was applied to each

RSFC matrix.
Network analysis. A thresholding scheme based on

orthogonal minimal spanning trees was used to filter the

binarized and positive RSFC networks (Dimitriadis et al.,

2017; Adamovich et al., 2022). Next, ten different kinds

of topological metrics were calculated: betweenness cen-

trality, degree centrality, nodal efficiency, closeness cen-

trality, clustering coefficients, eigenvector centrality,

leverage centrality, local efficiency, shortest path length,

and subgraph centrality. Betweenness centrality refers

to each node’s contribution to the shortest path between

all other node pairs (He & Evans, 2010). Degree centrality

is the number of edges directly connected to each node

(Freeman, 1978). Nodal efficiency is the average value

of the inverse of the shortest path length between a given

node and all other nodes in the network (Boccaletti et al.,

2006). Closeness centrality is the closeness between a

node and other nodes in the graph (Okamoto et al.,

2008). Clustering coefficient reflects the degree of node

clustering (Saramäki et al., 2007). Eigenvector centrality

measures the influence of each node in the network

(Bonacich, 2007). Leverage centrality measures the rela-

tionship between the degree of each node and that of their
Functional Connectivity and its Validation in Task-dependent Modality. Neuroscience (2023), https://doi.

https://www.nitrc.org/projects/gretna
https://www.nitrc.org/projects/gretna
https://doi.org/10.1016/j.neuroscience.2023.08.017
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neighbors (Joyce et al., 2010). Local efficiency measures

the average global efficiency of the subgraph induced by

the neighbors of a node (Latora & Marchiori, 2001). The

shortest path length measures the maximal shortest path

length that each node has with other nodes in the graph

(Chen et al., 2011). Subgraph centrality measures the

number of closed loops starting and ending at each node

(Estrada & Rodriguez-Velazquez, 2005). A previous study

found that the hubs from different metrics could be cate-

gorized into connector (e.g., eigenvector centrality), dis-

tributed (e.g., degree centrality), and aggregated groups

(Wang et al., 2018). They had distinctive characteristics

to support their distinguished roles, such as space distri-

bution, topological vulnerability, and cognitive flexibility.
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SVR analysis. A linear SVR model with a cost

parameter (C) was trained using topological metrics as

features in the Libsvm toolbox in MATLAB (https://www.

csie.ntu.edu.tw/~cjlin/libsvm). Similar to a previous study

(He et al., 2021), nested 10-fold cross-validation (10F-

CV) was applied to determine the optimal C (searching

in [0.1, 10] with a step of 0.1; Brereton & Lloyd, 2010).

The inner 10F-CV determined the optimal C, and the

outer 10F-CV estimated the generalization of this model.

Specifically, 226 subjects were randomly divided into ten

folds; one-fold (10% of subjects) was used as the testing

set, and the remaining nine folds (90% of subjects) were

used as the training set. Since feature selection may lose

some information (Liu et al., 2015) and the feature dimen-

sions (264) were acceptable, each topological metric for

each participant was used as features (226 people � 264

regions) to train a SVR model. Each feature was linearly

scaled to the range of 0–1 across the training set to avoid

adverse effects caused by the difference in the numeric

ranges (Cui & Gong, 2018). Then, the test set was scaled

according to the same scaling parameters. The SVR

model was built to fit topological metric and CSE scores

in the training set and to obtain regression weights for

the 264 regions (see Method S1.2 in the supplementary

materials). The predicted CSE scores were obtained by

feeding the test set to the established SVR model. The

ten folds were accomplished before we obtained the pre-

dicted CSE scores for each subject and ten weight maps.

To achieve robust estimates, we repeated the abovemen-

tioned pipeline ten times to calculate the average of the

ten predicted CSE scores for each subject. The prediction

performance of the model was estimated by Pearson’s

correlation coefficients and the mean absolute error

between the measured and predicted scores. Next, we

randomly permutated the measured scores of CSE

1,000 times and placed them into the abovementioned

pipeline to obtain a null distribution of correlation coeffi-

cients between the measured and predicted scores to

evaluate the significance (set at p< 0.05). Finally, we

averaged 100 weight maps (10-fold � 10 times) to per-

form feature selection. Studies have shown that the abso-

lute value of regression weight is able to quantify the

predictive contribution of each feature (Dosenbach

et al., 2010; Cui et al., 2018). The feature, with a value

greater than the mean + 1 SD, was selected from the

averaged weight map (Ecker et al., 2010). Moreover,
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multi-feature combination analysis and prediction of per-

sonal and relational self-esteem scores were executed

(see Methods S1.3 and S1.4 in the supplementary

materials).

Relevance vector regression. To test the robustness

of the SVR, relevance vector regression (RVR) was

applied (He et al., 2021). RVR adopts Bayesian inference

to obtain parsimonious solutions with low computational

cost and favorable generalization (Tipping, 2001). As

RVR has no algorithm-specific parameter, 10F-CV with-

out nested structure was applied (see Method S1.5 in

the supplementary materials).

f

Validation analysis of task-based fMRI data

To verify the SVR analysis results, some task-based fMRI

data was collected. During task-state fMRI scanning,

participants completed a self-worth task. This dataset

has been used previously to study the neural

mechanisms of personal, relational, and collective self-

esteem (Zeng et al., 2021). The rationale of this validation

analysis is that if the activation patterns of the regions

identified (46 regions) in the SVR analysis can distinguish

collective self-worth from personal self-worth, relational

self-worth and semantic control conditions, the SVR anal-

ysis is valid and the identified regions are unique to collec-

tive self-esteem. The entire data analysis process is

shown in Fig. 2.

Participants. There were 55 participants in the task-

state dataset (28 females; aged 18–24 years; mean

age ± SD= 20.16 ± 1.50 years); notably, 46 of these

participants are in the resting-state dataset. Each

participant reported normal or corrected vision and no

history of neurological or mental illness, head injury, or

drug abuse. This experiment was approved by the

Ethics Committee of Southwest University (China), and

all participants signed an informed consent form before

the experiment.

Self-worth task. The self-worth task contained four

fMRI scan runs, and each run was made up of four

conditions that included personal self-worth, relational

self-worth, collective self-worth, and semantic control.

Further, each condition had ten trials in each run. In

each trial, subjects viewed a sentence and then

evaluated how much they agreed with it on a four-point

Likert scale, ranging from one (strongly disagree) to four

(strongly agree) (Fig. 1). The collective self-worth

stimuli, such as ‘‘I feel good about the social groups I

belong to,” were adapted from the Collective Self-

Esteem Scale (Luhtanen & Crocker, 1992). The relational

self-worth stimuli, such as ‘‘In general, I am glad to be a

member of my circle of friends,” were adapted from the

relational self-esteem scale (Du et al., 2012). The per-

sonal self-worth stimuli, such as ‘‘I feel that I am a person

of worth,” were adapted from the Rosenberg Self-Esteem

Scale (Rosenberg, 1965). The semantic control stimuli,

such as ‘‘China is the country with the largest population

in the world,” was common sense knowledge.
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Functional neuroimaging data acquisition. The brain

imaging data was obtained by a 3 T Prisma Siemens

Trio MRI scanner. Task-based fMRI data was collected

with the following echo-planar pulse sequence:

repetition time = 2000 ms, echo time = 30 ms, voxel

size = 3 � 3 � 3 mm3, field of view = 192 � 192 mm2,

number of slices = 32, slice thickness = 3 mm, slice

gap = 0.99. The anatomical scan information can be

seen in Method S1.1 in the supplementary materials.
448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466
Task-based fMRI data preprocessing and first-level

analysis. DPARSF was used for the preprocessing of

task-fMRI data. First, we removed the initial five

volumes. Then, slice timing and realignment were

performed to correct slice order and head motion. Next,

we co-registered the fMRI data to the anatomical image

and segmented it into gray matter, white matter, and

cerebrospinal fluid. We then normalized the functional

images onto the standard T1 Montreal Neurological

Institute template image with a voxel size of

3 � 3 � 3 mm3. Finally, we smoothened the functional

images with a 6-mm full-width at half-maximum

Gaussian kernel. The general linear model in SPM12

(http://www.fil.ion.ucl.ac.uk/spm) was used for first-level

analysis and was made up of four conditions (collective

self-worth, relational self-worth, personal self-worth, and

semantic control) and six movement parameters. This

analysis used a high-pass temporal filter with a 128 s

cutoff period. The normalized beta estimate was

calculated in the four conditions for further pattern-

information analysis (Haxby et al., 2001; Li et al., 2021;

Zeng et al., 2021).
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Multivariate pattern classification. Multivariate pattern

classification was performed in three steps, including

extraction of beta maps, model building, and

interpretation of results. re
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Extraction of beta maps. The power 264-region atlas

was used to construct beta maps. Beta values derived

from each voxel in each ROI were averaged, resulting in

264 averaged beta values per condition per participant.

The beta maps of the (46) identified regions from the

SVR analysis would be used as classification features in

the next step.
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Model building. Three linear support vector classifiers

were built using the LIBSVM toolbox (collective self-worth

VS relational self-worth, collective self-worth VS personal

self-worth, collective self-worth VS semantic control;

http://www.csie.ntu.edu.tw/~cjlin/libsvm/). The

parameters were set to default values (C = 1). The

leave-one-subject-out cross-validation (LOOCV)

procedure was performed to check the generalizability

of the model (Cawley & Talbot, 2004; Kaplan et al.,

2015). Specifically, in each iteration, one subject was

the test set, and the others were the training set. The

model trained on the training set was used to predict the

test set. The LOOCV program ended after each subject

had served as the test set.
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Interpretation of results. Receiver operating

characteristic (ROC) curves were drawn to describe the

classification performance (Vilares et al., 2017; Chow

et al., 2018). The area under the curve (AUC) is a widely

recognized metric for measuring the classification perfor-

mance of a machine learning algorithm. The AUC usually

ranges from 0.5 to 1, where 1 means the model has per-

fect classification performance and 0.5 indicates that the

classification task was done randomly with a poor classi-

fication performance.

RESULTS

The resting-state neural basis of CSE of

Behavioral results. The average CSE score of the 226

participants was 5.29, with a SD of 0.62.

Support vector regression results. Prediction of

each topological metric. Results showed that leverage

centrality (r= 0.1505, ppt = 0.050, mean absolute

error = 0.53, R2 = 0.3185) significantly predicted the

measured CSE scores. (Fig. 3). However, nodal

betweenness centrality (r= 0.0546, ppt = 0.241, mean

absolute error = 0.54), nodal degree centrality

(r= 0.0582, ppt = 0.225, mean absolute error = 0.53),

nodal efficiency (r= �0.0117, ppt = 0.482, mean

absolute error = 0.53), closeness centrality (r= 0.0138,

ppt = 0.372, mean absolute error = 0.52), clustering

coefficient (r= �0.0773, ppt = 0.776, mean absolute

error = 0.55), eigenvector centrality (r= �0.2643,

ppt = 0.995, mean absolute error = 0.56), local

efficiency (r= �0.1033, ppt = 0.846, mean absolute

error = 0.57), shortest path length (r= �0.0126,

ppt = 0.492, mean absolute error = 0.53), and

subgraph centrality (r= �0.1943, ppt = 0.996, mean

absolute error = 0.52) could not significantly predict the

measured CSE scores.

In the prediction of leverage centrality, 46 regions

were above the threshold (Fig. 3 and Table 1), which

were derived from the anterior cingulate cortex (ACC),

TPJ, dorsomedial prefrontal cortex (dmPFC), posterior

cingulate cortex (PCC), inferior frontal gyrus (IFG),

ventromedial prefrontal cortex (vmPFC), middle frontal

gyrus (MFG), dorsolateral prefrontal cortex (dlPFC),

posterior insula, orbitofrontal cortex (OFC), IPL,

postcentral gyrus, precentral gyrus, precuneus, temporal

lobe, occipital lobe, thalamus, and cerebellum.

Multi-feature combination analysis results. The results

showed that ten combined topological metrics

(r = �0.0061, ppt = 0.497, mean absolute error = 0.55)

could not significantly predict the measured CSE scores.

The prediction of personal and relational self-esteem.

The leverage centrality of the 46 brain regions could not

predict personal self-esteem scores (r= 0.0265,

ppt = 0.325, mean absolute error = 0.32) but

significantly predicted relational self-esteem scores

(r= 0.1372, ppt = 0.042, mean absolute error = 0.29).

This strongly suggests that the neural basis of CSE is

ted
 P

ro
Functional Connectivity and its Validation in Task-dependent Modality. Neuroscience (2023), https://doi.

http://www.fil.ion.ucl.ac.uk/spm
http://www.csie.ntu.edu.tw/%7ecjlin/libsvm/
https://doi.org/10.1016/j.neuroscience.2023.08.017
https://doi.org/10.1016/j.neuroscience.2023.08.017


494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

Fig. 3. The association between collective self-esteem questionnaire scores and leverage centrality from the 46 brain regions identified
through SVR. (a) Prediction performance (r= 0.1505, ppt = 0.050, mean absolute error = 0.53). The shaded region represents the confidence

interval for curve fitting. (b) The 46 brain regions were identified as the highest-ranking features in the SVR model (the size indicates their relative

weight).
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distinct from that of personal self-esteem, and is similar to

that of relational self-esteem.

Relevance vector regression results. Similar to the

SVR results, RVR analysis found that leverage centrality

(r= 0.1933, ppt = 0.007, mean absolute error = 0.51)

had excellent prediction performance (Fig. S1 in the

supplementary materials); however, nodal betweenness

centrality (r= 0.0412, ppt = 0.263, mean absolute

error = 0.54), nodal degree centrality (r= 0.0357,

ppt = 0.268, mean absolute error = 0.54), nodal

efficiency (r= �0.0987, ppt = 0.794, mean absolute

error = 0.57), closeness centrality (r= 0.0413,

ppt = 0.250, mean absolute error = 0.53), clustering

coefficient (r= �0.0113, ppt = 0.475, mean absolute

error = 0.53), eigenvector centrality (r= �0.2182,

ppt = 0.980, mean absolute error = 0.53), local

efficiency (r= �0.0284, ppt = 0.553, mean absolute

error = 0.54), shortest path length (r= �0.0786,

ppt = 0.759, mean absolute error = 0.55), and

subgraph centrality (r= �0.1712, ppt = 0.979, mean

absolute error = 0.56) could not significantly predict the

measured CSE scores. The regions that were above the

threshold were similar to those in the SVR analysis (see

Table S1 in the supplementary materials

Validation analysis results from the task-dependent
fMRI

Multivariate pattern classification found that the classifiers

using activation patterns of the 46 regions from the SVR

analysis as features could distinguish collective self-

worth from relational self-worth (CR classifier), personal

self-worth (CP classifier), and semantic control (CS

classifier) conditions. The AUCs of the CS, CP and CR
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classifiers were 86.68%, 72.52%, and 70.24%,

respectively (close to 100% indicates an optimal

classification; Fig. 4).
e

DISCUSSION

The current research attempted to explore the neural

basis of CSE from the whole-brain RSFC network. To

this end, SVR models were built to predict CSE

questionnaire scores using ten topological metrics as

features. Further, support vector classification analysis

was performed on a task-based fMRI dataset to test the

validity of the SVR analysis using the activation patterns

of the 46 regions from the SVR analysis as features.

The SVR analysis found that leverage centrality

successfully decoded individual differences in CSE and

the contributing brain regions (e.g., the mPFC, PCC,

precuneus, posterior insula, IPL, and TPJ) were

distributed across the self-referential processing,

affective processing and social cognition networks.

Support vector classification analysis found that the

activation pattern of the 46 regions distinguished

collective self-worth condition from other conditions.

This study uncovered the core and distinctive neural

basis of CSE in a resting-state fMRI dataset and

established the concordance between leverage

centrality and the activation pattern (during a collective

self-worth task) of the identified regions in terms of

representing CSE.

Numerous fMRI studies have reported the neural

basis of self-esteem (Pan et al., 2016; Kawamichi et al.,

2018; Li et al., 2021; Zeng et al., 2021). The most consis-

tent findings across different modalities for the neural

basis of self-esteem converged on the CMS (e.g., the
Functional Connectivity and its Validation in Task-dependent Modality. Neuroscience (2023), https://doi.
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Table 1. MNI coordinates and weights of the 46 brain regions identified as the highest-ranking features in the SVR model

ROI MNI coordinate Weight

X Y Z

ACC_pre_L �11 45 8 0.119

Angular_L �44 �65 35 0.110

Angular_R 47 �50 29 0.114

Frontal_Sup_Medial_R 9 54 3 0.211

Cerebellum_6_L –32 �55 �25 0.174

Cingulate_Mid_R 2 �24 30 0.131

Cingulum_Mid_L 0 �15 47 0.196

Cingulum_Post_R 8 �48 31 0.102

Cuneus_L �16 �77 34 0.183

Cuneus_L �3 �81 21 0.203

Frontal_Inf_Oper_R 47 10 33 0.162

Frontal_Med_Orb_L �3 44 �9 0.119

Frontal_Mid_2_L �34 55 4 0.204

Frontal_Sup_2_L �10 55 39 0.115

Frontal_Sup_2_R 31 56 14 0.169

Insula_R 36 �9 14 0.135

Lingual_L �15 �72 �8 0.121

Lingual_L �16 �52 �1 0.129

Lingual_R 17 �91 �14 0.168

Lingual_R 18 �47 �10 0.149

Lingual_R 27 �59 �9 0.137

Lingual_R 20 �86 �2 0.156

Occipital_Inf_L �47 �76 �10 0.141

Occipital_Inf_L 15 �87 37 0.128

Occipital_Mid_L �41 �75 26 0.117

Occipital_Mid_L �42 �74 0 0.131

Occipital_Mid_R 29 �77 25 0.121

Occipital_Sup_L �14 �91 31 0.113

OFCant_L �21 41 �20 0.138

Parietal_Inf_L �54 �23 43 0.107

Parietal_Inf_L �28 �58 48 0.136

Postcentral_R 42 �20 55 0.108

Postcentral_R 66 �8 25 0.106

Precentral_L �40 �19 54 0.151

Precentral_L �38 �27 69 0.154

Precentral_R 44 �8 57 0.121

Precuneus_L �11 �56 16 0.117

Rectus_R 8 41 �24 0.139

Supp_Motor_Area_L �3 2 53 0.131

Supp_Motor_Area_R 7 8 51 0.116

SupraMarginal_R 59 �17 29 0.155

Temporal_Inf_L �50 �7 �39 0.133

Temporal_Inf_R 46 �47 �17 0.125

Temporal_Sup_R 52 �33 8 0.244

Thalamus �5 �28 �4 0.111

Thalamus_L �2 �13 12 0.122

Note: Frontal_Med_Orb is also known as the ventromedial prefrontal cortex (vmPFC); Frontal_Sup_2 is also known as the dorsolateral prefrontal cortex (dlPFC). Angular_L

and SupraMarginal_L are also known as the temporoparietal junction gyrus (TPJ). Frontal_Sup_Medial_R is also known as the dorsal medial prefrontal cortex (dmPFC).
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mPFC, ACC, and PCC), precuneus, parahippocampal

gyrus, insula, dlPFC, OFC, putamen, postcentral gyrus,

and temporal lobe, which subserve self-referential pro-

cessing and affective processing (Leary & Baumeister,

2000; Robins et al., 2001; McClure et al., 2004;

Goldberg et al., 2006; Northoff et al., 2006; Levy et al.,

2010; Van der Meer et al., 2010; Eisenberger et al.,

2011; Feldstein Ewing et al., 2011; Qin & Northoff,

2011; Hughes & Beer, 2012; Herold et al., 2016; Feng

et al., 2018a,b; Jiang et al., 2018; Kawamichi et al.,

U
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2018; Peng et al., 2019). In line with previous studies,

we found that leverage centrality of the abovementioned

brain regions significantly predicted CSE. Specifically,

the mPFC and ACC were critical for assessing the value

of self-related content and conflict monitoring

(Eisenberger et al., 2011; Yang et al., 2012;

D’Argembeau, 2013). Further, the PCC and precuneus

were involved in the retrieval of autobiographical memo-

ries (Svoboda et al., 2006; Northoff, 2011; Yaoi et al.,

2015; Hu et al., 2016). It has been reported that the
Functional Connectivity and its Validation in Task-dependent Modality. Neuroscience (2023), https://doi.
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Fig. 4. Classification performance. The three classifiers distinguish collective self-worth from relational self-worth, personal self-worth,
and semantic control. CP classifier, distinguished collective self-worth from personal self-worth processing; CR classifier, distinguished collective

self-worth from relational self-worth processing; CS classifier, distinguished collective self-worth from semantic processing.
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OFC, posterior insula, and postcentral gyrus are engaged

in emotional processing during self-worth evaluation

(Yang et al., 2016; Izuma et al., 2018).

Moreover, recent research related to relational self-

esteem and CSE focused especially on the IPL, TPJ,

and IFG, which subserve social cognition processing

(Frith & Frith, 2005; Iacoboni & Dapretto, 2006;

Blakemore, 2008; Boccadoro et al., 2019; Li et al.,

2019; Li et al., 2021; Zeng et al., 2021). These regions

contribute to mentalizing and processing social informa-

tion such as perceiving the attitude of others from a

third-person perspective (Premack & Woodruff, 1978;

Van Overwalle & Baetens, 2009; Kreifelts et al., 2010).

In line with these studies, we found that these regions

also contributed to the prediction of CSE questionnaire

scores. Overall, our study suggested that the self-

referential processing, affective processing, and social

cognition networks underlay the neural basis of CSE in

the RSFC network.

Membership CSE refers to the personal assessment

that her or his group membership is worthwhile

(Luhtanen & Crocker, 1992). Private CSE refers to the

personal evaluation that the group as a whole is valuable.

Importance of identity refers to the degree of importance

of self-concept that a person puts on a social group.

Because these three components are involved in value

assessment and self-reference processing, we cautiously

speculated that mPFC, ACC, PCC, and precuneus under-

lie the neural basis of them. Moreover, value assessment

affects an individual’s emotions, so the OFC, posterior

insula, and postcentral gyrus are related to these compo-

nents (Leary & Baumeister, 2000; Robins et al., 2001).

Public CSE refers to the personal assessment of how

others perceive her or his group. It is involved in mental-

izing, so the IPL, TPJ, and IFG underlie the neural basis

of it. Therefore, there may be correspondence between

the core components of CSE and anatomical regions.

The concordance between the leverage centrality

from RSFC networks and the activation pattern during a

collective self-worth task in terms of representing CSE

was studied. The activation pattern of the identified

regions from the SVR analysis distinguished collective

self-worth from other conditions, proving the validation

of the topological properties from RSFC networks in
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predicting an individual’s personality (Tang et al., 2018;

Toschi et al., 2018; Kong et al., 2019). CSE has the same

neural basis in resting-state fMRI and task-based fMRI

paradigms. Moreover, classification accuracy decreased

from the CS classifier to the CP classifier and then to

the CR classifier. To some extent, this shows that the pro-

cessing of CSE is quite different from general semantic

processing (86.68%). CSE is more easily distinguished

from personal self-esteem (72.52%) than relational self-

esteem (70.28%). This trend has been found in the pre-

diction of personal and relational self-esteem scores.

The leverage centrality of the identified regions could

not predict personal self-esteem scores, though it could

significantly predict relational self-esteem scores. In addi-

tion, shared brain regions (e.g., the IPL, TPJ, and IFG)

between CSE and relational self-esteem may lead to this

trend. Furthermore, this finding also adds evidence in

support of a link between resting-state functional connec-

tion and task-based brain activity (Cole et al., 2016; Tavor

et al., 2016; Jones et al., 2017; Tobyne et al., 2018; Osher

et al., 2019; Cohen et al., 2020; Niu et al., 2021).

Notably, the mPFC underlies the neural basis of CSE.

While a previous study did not find that it played a role in

representing CSE (Zeng et al., 2021), the leverage cen-

trality of the mPFC contributed to the prediction of CSE

scores. We speculated that this may be caused by the

distinct analysis methods. In the previous study, contrast

and classification analyses were executed. Even if the

mPFC participated in the collective self-worth task, these

methods may mask its effects. By comparison, in the cur-

rent study, the leverage centrality of the mPFC was

directly used in the prediction. Besides, this discrepancy

may also be caused by the distinction between activation

level and functional connectivity or the difference between

resting-state and task-based fMRI paradigms.

There are some limitations to our study. First, a

subjective questionnaire was used to measure CSE.

Similar to other questionnaire indices, the CSE scale

was inevitably biased by social approval and individual

differences in self-awareness (Ellingson et al., 1999).

Second, psychological traits that correlate with CSE

(e.g., self-efficacy and depression) were not measured

nor were they controlled for in the current study. Next,

the effect size of the association between nodal leverage

ted
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centrality and collective self-esteem is small. Finally, the

experiment only recruited participants from China with a

collectivist culture and the number of participants in the

task-based fMRI dataset is small. Interpersonal relation-

ships are thought to be more of a concern in collectivist

cultures than in individualistic cultures (Yamaguchi

et al., 2007). Cross-cultural differences should be consid-

ered in future studies that explore the neural basis of

CSE.

The current study revealed that self-referential

processing (e.g., mPFC, ACC, PCC, precuneus),

affective processing (e.g., OFC, posterior insula,

postcentral gyrus), and social cognition (e.g., IPL, TPJ,

and IFG) networks underlay the neural basis of CSE in

the RSFC network. There is concordance between

leverage centrality from the RSFC network and the

activation pattern elicited during a collective self-worth

task in terms of representing CSE. These findings

suggest that the RSFC network is as good as task-

based activation at revealing the neural basis of CSE.
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